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Abstract

Forced convection flow through a channel filled with a porous medium is investigated analytically. A non-thermal
equilibrium, two-equation model is utilized to represent the fluid and solid energy transport. The Darcy—Forchheimer—
Brinkman model is used to represent the fluid transport within the porous medium. Analytical solutions are obtained
for both fluid and solid temperature fields incorporating the effects of various pertinent parameters such as the Biot
number, the thermal conductivity ratio, the Darcy number and the inertial parameter. The present analytical solution
for the two-equation model is validated against the exact solution for the one-equation model available in the literature
as well as the analytical solution for the non-thermal equilibrium case based on a Darcian flow field. Error maps for the
validity of one-equation model are established for various physical conditions taking into account the Darcy and in-
ertial parameters as well as the Biot and the thermal conductivity ratio of fluid to solid phases. It is shown that the
Darcy number and the inertial parameter have a lesser influence in establishing the validity of the local thermal

equilibrium assumption. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Forced convective heat transfer in porous media has
been the subject of many recent studies due to numerous
practical applications such as nuclear waste repository,
energy storage units, electronic cooling, thermal insula-
tion, packed bed heat exchangers, heat pipes, drying
technology, catalytic reactors, petroleum industries and
geothermal systems. The assumption of local thermal
equilibrium is widely used in many of these applications.
However, this assumption breaks down when a sub-
stantial temperature difference exists between the solid
and the fluid phases. More recently, local thermal non-
equilibrium has received considerable attention due to
its pertinence in applications where such a temperature
differential exists between the solid and the fluid phases.
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The work of Vafai and Tien [1] was one of the early
attempts to account for the boundary and inertia effects
in the momentum equation for a porous medium. They
found that the momentum boundary layer thickness is
of the order of \/K/e. Vafai and Thiyagaraja [2] pre-
sented analytical solutions for the velocity and tem-
perature fields for the interface region using the
Brinkman—Forchheimer-extended Darcy equation.
They considered three fundamental types of the inter-
face namely, the interface between two porous media,
the interface between a porous medium and a fluid layer
and the interface between a porous medium and an
impermeable medium. Amiri and Vafai [3] employed a
general fluid flow model and a two-phase energy equa-
tion to investigate the forced convective heat transfer
within a channel with constant wall temperature. They
included the effects of variable porosity and thermal
dispersion in their analysis and error maps for assessing
the importance of various simplifying assumptions that
are commonly used were established in their work.

Lee and Vafai [4] employed the non-thermal equi-
librium model to investigate the forced convective flow
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Nomenclature

a interfacial area per unit volume of
porousmedia (m™!)

Bi Biot number defined by Eq. (21)

¢ specific heat of the fluid (J kg™ K1)

Dy hydraulic diameter of the channel (m)

Da Darcy number defined by Eq. (14)

E error in the Nusselt number defined by
Eq. (67)

F a function that depends on the Reynolds
number and the microstructure of the porous
medium, used to express the inertia term

h; interstitial heat transfer coefficient
(Wm™2 K™

/. wall heat transfer coefficient for the
one-equation model defined by Eq. (63))
(Wm™2 K™

Ny wall heat transfer coefficient for the
two-equation model defined by Eq. (57)

(Wm2 K™

H characteristic length of the channel (m)

K permeability of the porous medium (m?)

krer  effective thermal conductivity of the fluid
(Wm™ K™

ksorr  effective thermal conductivity of the solid
(Wm™ K™

Nuy  Nusselt number for the one-equation model
defined by Eq. (64)

Nuy, Nusselt number for the two-equation model
defined by Eq. (58)

P pressure (N m™)

Gw heat flux at the wall (W m~?)

Re Reynolds number defined by Eq. (29)

T temperature (K)

u longitudinal velocity of the fluid (m s™!)

Uso longitudinal velocity outside the momentum
boundary layer

u* non-dimensional longitudinal velocity defined
by Eq. (10)

b longitudinal coordinate (m)

y transverse coordinate (m)

Greek symbols

e effective thermal diffusivity = k./p;c,(m? s71)

n non-dimensional  transverse  coordinate
defined by Eq. (10)

Y geometric constant defined by Eq. (11)

K ratio of the effective fluid conductivity to that
of the solid defined by Eq. (22)

0 non-dimensional temperature defined by
Eq. (10)

0, non-dimensional bulk mean temperature

defined by Eq. (66)
Ocp non-dimensional fluid bulk mean temperature
defined by Eq. (60)

14 non-dimensional  longitudinal coordinate
defined by Eq. (27)
0 porosity of the porous media

A inertia parameter defined by Eq. (15)
U fluid viscosity (kg m ™' s7')

vt fluid kinematic viscosity (m? s7!)

or fluid density (kg m’3)

p constant defined by Eq. (28)

Subscriptslsuperscripts
f fluid phase

] solid phase

w wall

* non-dimensional
eff effective property

Other symbol
() ‘local volume average’ of a quantity

through a channel filled with a porous medium subject
to a constant heat flux. They obtained analytical solu-
tions for the fluid and solid phase temperature distri-
butions. In their work, the validity of the one-equation
model was presented, considering a Darcian fluid flow.
Kim et al. [5] presented an analytical solution for the
two-equation model including the boundary effect for an
equivalent microchannel application. They presented
analytical solutions for the fluid and solid phase tem-
perature distributions based on the Brinkman-extended
Darcy equation. They also analyzed the validity of the
local thermal equilibrium assumption. Vafai and Kim [6]
presented an exact solution for fully developed flow in a
porous channel bounded by parallel plates subject to
constant heat flux boundary conditions. Kuznetsov [7]
obtained an interesting analytical solution for the tem-

perature difference between the solid and liquid phases
for the problem of thermal non-equilibrium in a parallel
plate channel with constant heat flux using a perturba-
tion approach. However, his analysis could not produce
a temperature distribution for any of the phases, nor
could it lead to a Nusselt number or an error map
configuration.

In the present work, analytical expressions for the
fluid and solid phase temperature distributions are ob-
tained for convective flow through the channel with a
constant heat flux applied at walls and accounting for
both boundary and inertial effects. To this end, the
Brinkman-Forchhiemer—extended Darcy equation,
which accounts for boundary and inertia effects, is used
to obtain the velocity field. Errors maps characterizing
validity of the thermal equilibrium are obtained for a
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range of Darcy and inertia numbers and the non-Dar-
cian effects on temperature differentials in porous media
are established.

2. Modeling and formulation
2.1. Problem description

The schematic diagram of the problem is shown in
Fig. 1. A rectangular channel or a circular duct is filled
with porous medium and is subject to a constant heat
flux boundary condition. The height of the channel or
the diameter of the circular duct is 2H. Due to symmetry
considerations, one half of the channel is considered.
The following assumptions are invoked:

1. Negligible radiation and natural convection.

2. Constant thermophysical properties.

3. Fully developed fluid flow and heat transfer con-
ditions.

2.2. Mathematical modeling

2.2.1. Governing equations
The momentum equation, accounting for the inertia
and boundary effects, is given by Vafai and Tien [1]

o
B2y Loy — oy

x . Saw-Sih=0 ()

The energy equations for the solid and fluid phase are
based on the work of Amiri and Vafai [3] employing a
non-thermal equilibrium model.

Fluid phase:
. T
b VT ha((T)° — () = pepfu 0 (2)
Solid phase:
ken V2T = hia (1) = (1)) = 0. 3)

N
opaddbdedbde bl
— om
. o ||
oy s .
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Fig. 1. Schematic of the physical model for flow through
a rectangular channel or a ciruclar duct and the coordinate
system.

The net transverse conduction is represented by the first
term of the above two equations, while the axial con-
duction is dropped since its contribution to the net en-
ergy transfer is not significant [3]. Physical aspects of the
above equations are discussed in Lee and Vafai [4] and
Bejan [8]. Furthermore, a comprehensive analysis of the
variances among different models and the dispersion and
variable porosity effects are presented in Alazimi and
Vafai [9]. Two basic geometries are considered. These
are a rectangular channel and a circular duct. As such,
the term V() is represented by:

Vf() = 6627;2) (Rectangular channel), 4)
Vf() = %6% (y%<y>> (Circular duct). (5)

The second term represents the local interaction between
the fluid and solid and the last term in the fluid’s energy
equation describes the convective energy transfer.

2.2.2. Boundary conditions
The fluid boundary conditions are represented by:

e -} (©)

»=0

dy

By choosing a boundary with a high thermal conduc-
tivity, the temperature of the solid and the fluid at the
wall interface will be the same,
f s

(| = (Tl = T (7)
Another representation of the boundary condition is
found by noting the following. The amount of heat flux
applied at the wall will be divided between the two
phases based on their effective thermal conductivity and
temperature gradient as set below,

o(Tr) o(Ty)
Oy oy

+ ks,efl'

y=H

(8)

qw = kresr

y=H

and the symmetry condition at the center of the channel
can be written as

om)' | _om)
dy dy

=0. 9)

y=0

=l

2.2.3. Normalization

The following dimensionless variables are introduced
for normalizing the governing equations and boundary
conditions

o= (u) Yy 0= vks,eff(<T> - TW)/HA

=1, ==, 10

U H qw ( )
In the above equations, y is a geometric constant de-
pending on the channel cross-section geometry and is
represented by
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D,
—r 11
7= (11)

where Dy, is the hydraulic diameter of the channel. For a
rectangular cross-section channel y = 1 while for a cir-
cular cross-section channel y = 1/2.

Adding Egs. (2) and (3), integrating it over the
channel cross-section and applying boundary conditions
(8) and (9) results

a<Tf>f _ 9w
penli 00 = e (12)

The non-dimensional momentum equation can be writ-
ten as

Vi ————?—— —— 2L -, (13)

where the * superscript has been dropped for con-
venience and the Darcy number and inertia parameter
are defined as:

K
Da = H72(57 (14)
3/2
_ o FuooH. (15)
Vf

The non-dimensional boundary conditions for the mo-
mentum equation are

du

=0, wl,_, =0 16
ay, s =1 (16)

Utilizing Eqgs. (10) and (12), the energy equations and
the associated boundary conditions can be written as:

KV20; +%Bi(05 —0) = u, (17)
V20, —%Bi(()s —0;) =0, (18)
05(1) = 0¢(1) =0, (19)
0,(0) = 0:(0) =0, (20)

where the x is the ratio of the effective thermal con-
ductivity of the fluid to solid and Bi is the Biot number
which represents the ratio of the internal convection
heat transfer between the solid and fluid to the con-
duction resistance of the solid, represented by:

hyyaH?
Bi = , 21
ks.eff ( )
kf eff
K=——. 22
ks,cff ( )

In this work, the temperature distributions for the solid
and fluid phases are presented for the case of a rec-
tangular channel.

2.3. Analysis

2.3.1. Velocity profile

Vafai and Thiyagaraja [2] had derived an analytical
expression for the velocity distribution for flow over an
external boundary using a singular perturbation analy-
sis, for the case of interface region between a porous
medium and an impermeable medium. After some
modifications, to adopt their result for the case of in-
ternal flow within a channel, yields the following velocity
distribution

u(&) = (&) + ou' (&) + 8P (&) + - +-) x (1 + AVDa),
(23)

where

u’(&) =1 —exp(—¢), (24)

u‘(é):ﬂ{—l—i—exp ( )+ exp(— 25)}7 (25)

ofe-3:-5)

(e =p {2+ exp(—

—%exp( 2¢) (2@%) - %exp( 36)} (26)
and where
_1-n
&= T (27)
B = FRe, (28)
Re = Ag/lf_“(l + AVDa). (29)

In the above equations, ¢ is the porosity of the porous
medium, Re, the Reynolds number and F is a function
used to express the inertia term that depends on the
Reynolds number and the microstructure of the porous
medium.

2.3.2. Temperature distribution

Utilizing the two coupled energy equations, Eqgs. (17)
and (18) which contain two unknowns, the following
equations can be obtained for the fluid and solid di-
mensionless temperatures.

i (%) (30)

e = s 0@

Two more sets of boundary conditions are required to
solve the above fourth-order differential equations.
These are obtained by applying the boundary conditions

k0" (1) — Bi(1 +
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given in Egs. (19) and (20) to Egs. (17) and (18). This
results in

0'(1) =0, 0;!(1):“(”: I)J—KI, (32)

0/(0)=0, 6(0)=———="" (33)
where u; = u(n = 1) and uy = u'(y = 0). The tempera-
ture distribution is found by solving Egs. (30) and (31)
and applying the boundary conditions given by Egs.
(19), (20), (32) and (33). After a lengthy process this
results in

_ 22?:1 I'i(n) _r

C
0, Tt
s(11) o 20 "t OC% cosh{z) + G
(34)
and
Shnn) w5 G G
Or(n) =255 ——— o'+ a
() = 2 T i) 5
x cosh(a;1) + Cs, (33)
where
1 Bi
o JIE 39
K
_ 2 02
=5+ 25) )
[o4]
o B+ VD) &
K
1
Ci = - [=Ai(1) tanh(on) + Ax(1)], 39)
YL  u G
G=-2==—"+"———
2 o Jr2061 Ot% coshie), e
)
o “ (41)
w1 :
Y7 kcosh(w) o [(A1s(1) + A1 (1)
+ o) tanh(o) + (= An(1) + Ay (1)), (42)
Yol w G
=&l B/ 2 2
Cs . +2a1 2 sinh(o)
C.
_ a—; cosh(a)) (43)
1
and

I';(n) = y;1[cosh(B7) + sinh(B7)] + 7,,[(B7 cosh(B7)
— 2sinh(B7)) + (B; sinh(B7) — 2 cosh(B))]
+ 7;3[(B3 cosh(B;) — 4B; sinh(B;) + 6 cosh(B7))

+ (B%sinh(B;) — 4B; cosh(B;) + 6sinh(B;))]
+ 74[cosh(2B7) + sinh(2B;)]

+7;5[(2B; cosh(2B;) — 2sinh(2B;))

+ (2B; sinh(2B;) — 2 cosh(2B;))]

+ 7;5lcosh(3B;) + sinh(3B;)], (44)
where
o1 D" A i
= o *( )T (0 )
i+1 0‘% it+1
+}u,‘3((_1) ?+O(|+(—1) ):|7
_ (=™ wr o | (=D
Vi = D2 ((— 1) —B) Ai2 2
_ )»,-3<(— D"+ oq) , (45)
N Y _ H'IL%,ﬂ (_1)i+l
Vis = D2 /113 <( 1) 2D2 D + 2 )
o1 M+l i+1
/;4*@[%4(—1) —ﬂi5<(—1) +°¢1>}7

78 = gz s (- 17 - 20Y).

1 i+
Yie = 1802 [7»1'6(* 1) ]7
in which,
1
D:\/m (46)
and
P 1 :u/Z l'tj:')
Akl —Ei M +7,+ﬁ7? s
1 2
i 7D {ﬂjz +[T{%}
1
Ak3 ﬂ3D2 H/37
_ 1 His
A4 = Bina [HJA + 2D]’
Aks = 21 [E}
BiinD 2
1

Je = o M-
ﬁi+4

Fork=1 set i=1,j=1, k=2 seti=2, j=1,
Fork=3 set i=1, j=2, k=4 set i=2, j=2,
(47)

where the values of k are set through the running sum-
mation index in Eq. (43) and
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29 13D D*\ .,
“ll‘“{(‘ﬁ‘ﬁ*?)”

(o]

_ B D\opyn 1o,n
ulz_aszlz 2)5/30 S0BD?|,
(1
s = | 49D (49)
op 5 1
M14:“2T{—(D+§)5ﬁ+§}
_2 20212
s = % 55/313 ;

_ Lo,
Mls—az_ 245/3}

and

[/ 163 25D D*\ .,
“21”‘{(‘7*?‘7)”

2 D 1
+(3-3)w+)

[ 25 D). 1.
My = 03 ( - E‘FE)()Z[;ZDZ +§5ﬁD2} ;
Hy3 = 3] — %5252D4} ) (49)

Hyy =&

<@

/4D 8 2
(5+5) 7w -500].

8
Hos = 03| — 5521321)2} ;

[3
Hog = 03 §52ﬁ2}7

where
—D*(1 + AVD,
yy = 21+ AVDa) (50)
K
and where
ﬁl = (_ul +D)7
ﬁZ = (061 +D)7
ﬂ} = (70" +2D)a
51
ﬁ4=(0(]+2D), ( )
ﬁS = (_al +3D)a
B = (o1 +3D)
and
Bl = ﬂlr’ _D7
Bz :ﬂzi’I_D,
By = B — 2D
By = By — 2D, (52)
B5 = ﬁsl’[ — 3D
Bﬁ = ﬂ()n - 3D7
B;=nD—-D

and

Ais(n) = Ai(n) + A2(n) + psinh(eqn), (53)
Ax(n) = —Ay(n) + Az(n) + pcosh(ain),

Air(n) = A3(n) + Aa(n), (54)

A;() = Za | cosh(B)) + sinh(B;)]| + A [(B; cosh(B))
— sinh(B;)) + (B;sinh(B;) — cosh(5,))]
+ 2i3[(B cosh(B;) — 2B; sinh(B,) + 2 cosh(B)))
+ (B sinh(B,) — 2B, cosh(B;) + 2sinh(B,))]
+ Aulcosh(B)1») + sinh(B}12)]
+ Ais[(Bjs2 cosh(B)y,) — sinh(B}1,))
+ (Bj+28inh(B42) — cosh(B}12))]
+ Ag[cosh(B)i4) + sinh(B;14)].
Fori=1 setj=1, i=2 setj=2,

: : : : (55)
Fori=3 setj=1, i=4 setj=2.

2.3.3. Heat transfer calculations
The wall heat transfer coefficient for the two-equa-
tion model is obtained from

4w
hyy = 56
T T, — Tip (56)

and the Nusselt number at the channel wall is given by

Nuwz = 5 (57)

which can be represented as

—4y?
Nuwz = Y

; (58)

where the subscript w2 denotes the channel wall for the
two-equation model. The non-dimensional fluid bulk
mean temperature across the channel cross-section 0, is
defined by

Of‘b:/o 9{(1’])(117 (59)

2.4. One-equation model

The energy equation for the one-equation model case
is given by

(k+ 1)V20 = u(é). (60)

The temperature distribution for the one-equation
model is obtained as
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1 + Av/Da 1 1 ,
Ki_g_l KE(” _ 1) -5 (637(1) _ 637(1)))

1 1
o3
N\ L1 (8 B(1)
# (1)) 3 ((3-mm)er

031 Bi(n) )\ eB)

)55 (&)
_ﬁ2(1+%(( —231 B7§1)+Bz( ))ez>
1)) e2337<1> B <%)6337(1)))} .

The wall heat transfer coefficient for the one-equation
model is obtained from

0(n) =

(61)

4w
- 2
=7, (62)

and the Nusselt number for the one-equation model is
given by

Nitgy = 120 (63)

NMWl = 5 (64)

where the non-dimensional bulk mean temperature
across the channel cross-section 0y, for the one-equation
model is,

0, = / 0(n) . (65)

2.4.1. Error map

The error in the Nusselt number based on using the
one-equation model is found by using the analytical
expressions given in Egs. (59) and (65)
Nuwl - NuWZ efb

=, (66)

E =
Ni Uy Ob

3. Results and discussion

An in depth description of the physical attributes
pertaining to the temperature differential between the

fluid and solid phases is given in Lee and Vafai [4] and
will not be repeated here. The role of the pertinent
parameters and their physical effects are clearly shown
in the upcoming figures. The analytical temperature
distribution was compared with the numerical solution
of the momentum and energy equations for a range of
pertinent physical parameters Bi, Da, A and x as
shown in Figs. 2-4. An excellent agreement was found
between analytical and numerical results. Variations of
the four controlling parameters were used to illustrate
their influence on the temperature profile for both the
solid and liquid phases. Considering the case for
Da=10"%,4=0 and a small x as shown in Fig. 2(a),
when Bi is small, the temperature difference between
the two phases was relatively large due to a small Biot
number, thus causing a weak internal heat transfer
exchange between the fluid and solid. The small value
of «k translate into a small fluid conductivity which
result in an uniform temperature near the center of the
channel. As the Biot number increases, the internal
heat transfer exchange increases, causing the fluid
temperature to become closer to the solid temperature
which remains almost unchanged, leading to a rela-
tively small temperature difference between the fluid
and solid phases.

The effect of an increase in the thermal conductivity
ratio, x, on the fluid and solid temperatures for two
different values of Bi is shown in Fig. 2(b). Due to a
larger fluid conductivity, fluid conduction will become
substantial within most of the channel creating a para-
bolic temperature distribution. A larger Biot number,
results in a smaller temperature difference between the
two phases. Decreasing the Biot number, causes the
solid temperature to become closer to the fluid tem-
perature which hardly changes, resulting in a small
temperature difference between the two phases. The fluid
conduction which also controlled the heat transfer pro-
cess for the large k case results in once again a parabolic
profile.

The effect of variations in the inertial parameter on
the fluid and solid phases are shown in Figs. 2-4 for
various values of Bi and x for Da = 1072, As the Inertial
parameter increases, the order of magnitude of the
temperature difference increases. However, the tem-
perature distribution for both solid and liquid phases
follows the same trend.

The present analytical solution based on the gener-
alized flow model for the fluid and solid phases was
compared with the analytical solution given by Lee and
Vafai [4]. This was done by using a small Darcy
number of 10~® and 4 =0 in the present analytical
solution based on the generalized flow model so as to
induce a Darcian velocity distribution similar to that
considered in Lee and Vafai [4]. Comparisons were
done for four sets of Biot number, Bi, and ratio of
effective fluid to solid conductivity, k, as shown in
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Fig. 4. Comparison of the numerical and analytical temperature distributions for both solid and fluid phases at Da = 1072, A

(a) = 0.01; (b) x = 100.
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Fig. 5. Solid and fluid phase temperature distribution comparisons between the analytical solution of Lee and Vafai [4] and the present

work for Bi=0.5, Da =107%, A = 0: (a) x = 0.01; (b) x = 100.
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Fig. 6. Solid and fluid phase temperature distribution comparisons between the analytical solution of Lee and Vafai [4] and the present

work for Bi=10, Da = 10=%, 4 = 0: (a) k = 0.01; (b) x = 100.

Figs. 5 and 6. Excellent agreements were found be-
tween the two solutions.

Error maps for the validity of the one-equation
model for Da = 10~ are shown in Fig. 7. These error
maps are based on comparisons between the one- and
two-equation model Nusselt numbers as shown in Eq.
(67). The numbers displayed on Fig. 7 are indicative of
the error incurred in using the one-equation model as
opposed to the more general two-equation model. For
small values of both controlling parameters Bi and «, the
error maps show an invalid implementation of the one-
equation model, while the error decreases as one or both
parameters increases as depicted by the error maps in
Fig. 7. Figs. 7(a)-(c) demonstrate that as the inertial
parameter increases, the error in using one-equation
model increases slightly. Fig. 8 displays an error map for
a larger Darcy number, Da = 1072, Comparison be-
tween the error maps in Fig. 7 and Fig. 8 illustrate that

the error decreases as the Darcy number decreases.
Overall, the inertial parameter and Darcy number had a
substantially smaller influence on establishing the va-
lidity of the one-equation model than the Biot number
and the thermal conductivity ratio.

4. Conclusions

Forced convective flow through a channel filled with
a porous medium was investigated analytically in this
work. Energy equations for the solid and fluid phases
were used employing a non-thermal equilibrium model
and the Brikman-Forchhiemer-extended Darcy model.
An analytical representation of the temperature field
for both phases was obtained incorporating the effects
of Biot number, Darcy number, inertial parameter and
the conductivity ratio. The temperature difference
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Fig. 7. Error maps for the validity of one-equation model at Da = 107*, (a) A4 = 0: (b) A = 10; (c) A = 100.

Fig. 8. Error map for the validity of one-equation model at
A =10 and Da = 1072,

between the fluid and solid phases was found to de-
crease with an increase in the Biot number, Bi, due to
higher internal convection between the two phases,
while an increase in x resulted in a relative increase in
fluid conduction throughout instead of being confined
near the channel center. Finally, error maps based on
the Nusselt number were obtained to check the validity
of the one-equation model for different physical pa-
rameters. Smaller values of the Biot number, Bi, and
the thermal conductivity ratio, x, resulted in an in-
crease in the error demonstrating a required use of the
two-equation model instead of the one-equation model.
It was also established that the Darcy number, Da, and

the inertial parameter, A, have a smaller role in de-
termining the validity of the one-equation model as
compared to the Biot number, Bi, and the thermal
conductivity ratio, A.
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